

Hadron Spectroscopy at COMPASS

A Selective Overview

Sebastian Neubert for the COMPASS collaboration

Technische Universität München

MENU 2010

Williamsburg, VA

The COMPASS Experiment

Spectrometer and Hadron Beam

Overview

The COMPASS Experiment

Spectrometer and Hadron Beam

Overview

- CERN SPS M2-beamline:
 - neg. beam: 190GeV/c π⁻(95%), K⁻(4.5%)
 - pos. beam: 190GeV/c p(71.5%), π⁺(25.5%), K⁺(3%)
- Pilotrun 2004 190 GeV π^- beam on nuclear targets (mainly Pb)
 - $3\pi^{\pm}$ high-t'analysis ~ 400 000 events ($\pi_1(1600)$ PRL in print)

• 2008 Apparatus Upgrade

- Recoil Proton Detector (RPD), calorimetry, kaon PID
- 2008 Run mainly 190 GeV π^- beam on IH₂ target
 - $\bullet~3\pi^\pm$ diffractive on proton \sim 100M events
- 2009 Run pion / proton beams on IH₂ and nuclear targets

Production Mechanisms at COMPASS

and most prominent Phyics Motivations

Diffractive Dissociation \rightarrow Search for Spin-Exotics

Pomeron t-channel exchange

$$T \propto t^{\frac{1}{2}|\lambda_a - \lambda_x|} s^{\alpha(t)} t^{\frac{1}{2}|\lambda_b - \lambda_c|}$$

Isospin Triplet States I = 1

Central Production \rightarrow Glueball Search

- Pomeron-Pomeron fusion
- Isospin Singlet States I = 0

$Primakoff \ Production \rightarrow Radiative \ Widths$

Photon exchange (Nucl.Field)

• Helicity
$$\lambda_x = 1$$

Sebastian Neubert — Hadron Spectroscopy at COMPASS

and most prominent Phyics Motivations

Diffractive Dissociation \rightarrow Search for Spin-Exotics

Pomeron t-channel exchange

$$T \propto t^{\frac{1}{2}|\lambda_a - \lambda_x|} s^{\alpha(t)} t^{\frac{1}{2}|\lambda_b - \lambda_c|}$$

Technische Universität Mür

Primakoff Production → Radiative Widths

Photon exchange (Nucl.Field)

• Helicity
$$\lambda_x = 1$$

Production Mechanisms at COMPASS

and most prominent Phyics Motivations

Diffractive Dissociation \rightarrow Search for Spin-Exotics

Pomeron t-channel exchange

$$T \propto t^{\frac{1}{2}|\lambda_a - \lambda_x|} s^{\alpha(t)} t^{\frac{1}{2}|\lambda_b - \lambda_c|}$$

Isospin Triplet States I = 1

Central Production \rightarrow Glueball Search

Sebastian Neubert — Hadron Spectroscopy at COMPASS

Production Mechanisms at COMPASS

and most prominent Phyics Motivations

Diffractive Dissociation \rightarrow Search for Spin-Exotics

Pomeron t-channel exchange

$$T \propto t^{\frac{1}{2}|\lambda_a - \lambda_x|} s^{\alpha(t)} t^{\frac{1}{2}|\lambda_b - \lambda_c|}$$

Isospin Triplet States I = 1

Central Production \rightarrow Glueball Search

Photon exchange (Nucl.Field)

• Helicity
$$\lambda_x = 1$$

Basic Event Selection - Exclusivity E. g. $\pi^-\pi^-\pi^+$ similar for all analyses

• Supplemented by recoil detector (see $\pi^{-}\pi^{0}\pi^{0}$ later in this talk)

Squared Momentum Transfer $t = -q^2$

Technische Universität München

 $t' = t - t_{min}$

Left: Dalitz plot for $a_2(1320)$, events selected by $\pm \Gamma_0$ around a_2 mass. Right: Dalitz plot for $\pi_2(1670)$ with $\pm 0.5\Gamma_0$.

Input to PWA per mass bin: one Dalitz plot + 3 angles = 5 variables

Mass-Independent PWA

 Fit angular distributions + isobar systems in independent mass bins

$$\sigma(\tau, m) = \sum_{\epsilon=\pm 1} \sum_{r=1}^{N_r} \left| \sum_{i} \frac{\mathbf{T}_{ir}^{\epsilon}(m)}{\int} f_{i}^{\epsilon}(t') \psi_{i}^{\epsilon}(\tau, m) / \sqrt{\int \left| \psi_{i}^{\epsilon}(\tau', m) \right|^{2} d\tau'} \right|^{2}$$

- Production amplitude
 t'-dependence (helicity "flip")
- Decay amplitude (Helicity formalism, reflectivity basis)

Mass-Dependent χ^2 fit \rightarrow Extract Resonance Parameters

- Parameterization of spin-density matrix elements $\sum T_{ir}^{\epsilon} T_{jr}^{\epsilon*}(m_x)$
- Takes into account interference terms
- Coherent background for some waves

Intensities of dominant J^{PC} states

First results from mass independent PWA (2008)

Intensities of dominant J^{PC} states

First results from mass independent PWA (2008)

$\pi^{-}\pi^{0}\pi^{0}$ Final State - Selection

 $m_{\gamma\gamma}$ vs $m_{\gamma\gamma}$:

First results from 3π PWA (2008) Comparison: $\pi^{-}\pi^{+}\pi^{-}$ vs. $\pi^{-}\pi^{0}\pi^{0}$ (normalized on *a*2(1320) peak)

- Isospin symmetry $\pi^-\pi^+\pi^-$ vs. $\pi^-\pi^0\pi^0$
- I = 0 vs $I = 1 \pi \pi$ isobars
- \Rightarrow factor 2 between $\pi^{-}\pi^{+}\pi^{-}$ and $\pi^{-}\pi^{0}\pi^{0}$ for $I_{\pi\pi} = 0$ (Isospin Clebsch Gordan)

Technische Universität Müncher

First results from 3π PWA (2008) Comparison: $\pi^-\pi^+\pi^-$ vs. $\pi^-\pi^0\pi^0$ (normalized on *a*2(1320) peak)

- Isospin symmetry $\pi^-\pi^+\pi^-$ vs. $\pi^-\pi^0\pi^0$
- I = 0 vs $I = 1 \pi \pi$ isobars
- \Rightarrow factor 2 between $\pi^{-}\pi^{+}\pi^{-}$ and $\pi^{-}\pi^{0}\pi^{0}$ for $I_{\pi\pi} = 0$ (Isospin Clebsch Gordan)

Technische Universität München

Primakoff Production of 3π States

Statistical Subtraction of Diffractive Component at low t'

- Diffraction: Spinprojection $M_J^{\chi} = 1$ suppressed for $t \to 0$
- Primakoff photon: helicity $1 \Rightarrow M = \pm 1$ expected

Technische Universität Müncher

Primakoff Production of 3π States

Statistical Subtraction of Diffractive Component at low t'

- Diffraction: Spinprojection $M_J^X = 1$ suppressed for $t \to 0$
- Primakoff photon: helicity $1 \Rightarrow M = \pm 1$ expected

Technische Universität Müncher

Extraction of a2(1320) Production Phase

- $\bullet\,$ Partial wave fit \Rightarrow 1^++ and 2^++ signals
- 2^{++} only produced with $M \ge 1$ (natural parity exchange)

Extraction of a2(1320) Production Phase

echnische Universität Müncher

Interpretation

- $\bullet\,$ Partial wave fit \Rightarrow 1^++ and 2^++ signals
- 2^{++} only produced with $M \ge 1$ (natural)

Transition from dominantly Primakoff to dominantly diffractive production

Multiparticle Final States: $\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

2004 Data Sample – Pb target

5π invariant mass

- Mass range $> 2\,{\rm GeV/c}^2$
- Light meson frontier: many disputed states in this region (0⁻⁺)(1⁺⁺)(1⁻⁺)(2⁻⁺)(4⁺⁺)(4⁻⁺)...
- Parity doublets? Effective restoration of classical QCD symmetries?
- Decay modes $b_1\pi$, $f_1\pi$, $\rho'\pi$

Multiparticle Final States: $\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

2004 Data Sample – Pb target

5π invariant mass

(15 MeV/c²)

- Mass range $> 2 \,\mathrm{GeV/c^2}$
- Light meson frontier: many disputed states in this region (0⁻⁺)(1⁺⁺)(1⁻⁺)(2⁻⁺)(4⁺⁺)(4⁻⁺)...
- Parity doublets? Effective restoration of classical QCD symmetries?
- Decay modes $b_1\pi$, $f_1\pi$, $\rho'\pi$
- Prototype multiparticle analysis
- Complex isobar decays
- New algorithmic approaches → e. g. Genetic Optimization

COMPASS 2004

4π Central Production on Proton Target

Can we kinematically separate I = 0 4π systems?

Event signature

- Fast outgoing π^-
- Slow recoil proton
- Rapidity gaps

Selection of centrally produced 4π using cut $x_F^{\pi_{\text{tast}}} > 0.7$ $x_F = \frac{2\rho}{\pi}$

Separability from diffractive processes

- x_F cut enriches $f_1(1285)$
- Both central prod. and diffraction present @ 190 GeV/c
- Unified analysis technique required

\bigotimes Kaon Diffraction ${\cal K}^- {m p} o {\cal K}^- \pi^+ \pi^- {m p}$

- Beam kaon tagging with Differential Cherenkov Counters (CEDAR)
- FS kaon ID with RICH
- ~ 600 000 events on tape from 2008 (WA32: 200 000)

Technische Universität München

\bigotimes Proton Diffraction: $pp \rightarrow p\pi^+\pi^-p_{recoil}$

Technische Universität München

Proton Diffraction: $pp \rightarrow p_{fast}K^+K^-p_{slow}$

Summary: Rich, high statistics data samples

- 96M $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ events (2008)
- $\pi^- p \rightarrow \pi^- \pi^0 \pi^0 p$
 - $\bullet \ \rightarrow \mathsf{PWA} \ \mathsf{started}$
- 5π , 3π Primakoff, Kaon diffraction, 4π central production, $\pi^-\eta$, $KK\pi\pi$, K_sK_s central production
- Baryon Spectroscopy from 2008 pilot run

Outlook:

- Main focus: Acceptance simulation
- Ongoing work on ECal resonstruction (due to hardware upgrade)
- Advancement of PWA software http://sourceforge.net/projects/rootpwa
- 2009 data being prepared for analysis